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ABSTRACT
We examine the nonlinear stability of the Wisdom-Holman (WH) symplectic mapping applied to the

integration of perturbed, highly eccentric two-body orbits. We Ðnd that the method is unstable(eZ 0.9)
and introduces artiÐcial chaos into the computed trajectories for this class of problems, unless the step
size chosen is small enough that periapse is always resolved, in which case the method is generically
stable. This ““ radial orbit instability ÏÏ persists even for weakly perturbed systems. Using the Stark
problem as a Ðducial test case, we investigate the dynamical origin of this instability and argue that the
numerical chaos results from the overlap of step-size resonances ; interestingly, for the Stark problem
many of these resonances appear to be absolutely stable.

We similarly examine the robustness of several alternative integration methods : a time-regularized
version of the WH mapping suggested by Mikkola ; the potential-splitting (PS) method of Duncan,
Levison, & Lee ; and two original methods incorporating approximations based on Stark motion instead
of Keplerian motion (compare Newman et al.). The two Ðxed point problem and a related, more general
problem are used to conduct a comparative test of the various methods for several types of motion.
Among the algorithms tested, the time-transformed WH mapping is clearly the most efficient and stable
method of integrating eccentric, nearly Keplerian orbits in the absence of close encounters. For test par-
ticles subject to both high eccentricities and very close encounters, we Ðnd an enhanced version of the
PS methodÈincorporating time regularization, force-center switching, and an improved kernel
functionÈto be both economical and highly versatile. We conclude that Stark-based methods are of
marginal utility in N-body type integrations. Additional implications for the symplectic integration of
N-body systems are discussed.
Key words : celestial mechanics, stellar dynamics È chaos È methods : numerical

1. INTRODUCTION

Symplectic integration schemes have become increasingly
popular tools for the numerical study of dynamical systems,
because they are often highly efficient and typically display
long-term stability (see, e.g., Marsden, Patrick, & Shadwick
1996 and the many references given there). The Wisdom-
Holman (WH) symplectic mapping in particular (Wisdom
& Holman 1991 ; cf. Kinoshita, Yoshida, & Nakai 1991) has
been widely used in the context of solar system dynamics.
However, the fact that this and other symplectic methods
are, by construction, ““ Ðnely tuned ÏÏ can make them suscep-
tible to performance-degrading ailments (much as high-
order methods o†er little beneÐt if the motion is not
sufficiently smooth), and the stability of these methods for
arbitrary systems and initial conditions is not completely
understood. It would be prudent, therefore, to exercise
caution when applying such schemes to systems entering
previously unexplored dynamical states, and to ensure that
adequate preliminary testing is undertaken regardless of the
methodÏs stability in previously considered problems.
Recent galactic dynamics simulations by Rauch & Ingalls
(1998), for exampleÈwhich used the WH mappingÈ
uncovered evidence of an instability in the method when
applied to a particular class of problems : the integration of
highly elliptical, nearly Keplerian orbits in which the time
step is made small enough to resolve the perturbation forces
smoothly, but not so tiny as to explicitly resolve pericenter.
Because particle motion in these simulations was extremely
close to Keplerian near pericenter, and because the

mapping itself is exact for Keplerian motion, it is quite
surprising that the method performed as poorly and
unstably as was found.

Recently, several variations of the WH mapping have
been proposed that aim to extend the range of applicability
of the original method. The time-regularized WH mappings
investigated by Mikkola (1997), for instance, appear prom-
ising in the context of elliptical motion. The potential-
splitting method of Duncan, Levison, & Lee (1998 ; see also
Lee, Duncan, & Levison 1997) allows symplectic integra-
tion of close encounters between massive bodies by adding
a multiple time-step algorithm similar to that of Skeel &
Biesiadecki (1994). Unfortunately, both of these schemes
have limitations of their own; the former approach is
unable to resolve close encounters, whereas the latter (like
the original mapping) appears to be unstable when orbits
are eccentric (cf. Duncan et al. 1998).

In this paper, we use a series of test problems based on
perturbed two-body motion to analyze the stability of the
WH mapping and several of its variants. In particular, we
examine the reliability of the methods for test particles
whose motion is either highly eccentric or subject to close
encounters with the perturbers (or both). The plan of the
paper is as follows. In ° 2, the performance of the WH
mapping at high eccentricities is investigated using the
Stark problem (see, e.g., Dankowicz 1994 ; Kirchgraber
1971)Èfor which the range of orbital eccentricities is easily
controlled and no close encounters occurÈas the Ðducial
test case. The instability found in the integrated motion is
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then explained using complementary analytic and geo-
metric arguments. In ° 3, modiÐed forms of the original
mapping are described ; similarly, in ° 4 integrators based on
Stark motion instead of Keplerain motion are considered.
Section 5 uses the TFP problem (see, e.g., Pars 1965) as well
as a more general test problem (drawn from the area of
galactic dynamics) to conduct a comparative performance
analysis of the various algorithms. Both the Stark and two
Ðxed point (TFP) problems are fully integrable and analyti-
cally soluble in terms of elliptic functions and integrals,
which allows a detailed assessment of the accuracy of the
numerical results to be made. A concluding discussion is
given in ° 6.

2. THE STARK PROBLEM

2.1. Orbital Motion
The Stark problem represents the motion of a test par-

ticle about a Ðxed Newtonian force center (i.e., the Kepler
problem) subject in addition to a uniform force of constant
magnitude and direction. The Hamiltonian (per unit mass)
for the problem is given by

H \ p2
2

[ GM
r

[ S Æ x , (1)

where x is the Cartesian position, p is its conjugate momen-
tum (in this case, the physical velocity), r \ o x o , M is the
mass of the central object, and the constant vector S (the
““ Stark vector ÏÏ) embodies the uniform Ðeld. Physical exam-
ples include the (classical) orbit of an electron about a Ðxed
nucleus immersed in a uniform electric Ðeld ; the trajectory
about its parent of an artiÐcial satellite with a continuously
Ðring thruster ; and the motion of a dust particle around a
comet nucleus, taking into account the radiation pressure of
sunlight (cf. Hamilton & Burns 1992 ; Mignard 1982). There
are three conserved quantities (and hence the motion is
regular) : the energy, E ; the angular momentum component
along the Stark vector, and a third integral, a (say),L Æ SŒ ;
which arises as a ““ separation constant ÏÏ in the analytic
solution of the problem.

Qualitatively speaking, motion in the Stark problem is
bound whenever E\ 0 and o S o\ S [ Scrit(E)\E2/(GM),
and it is nearly Keplerian when In this latter caseS > Scrit.the orbit consists of a precessing ellipse of varying eccentric-
ity and inclination. In the two-dimensional case (z\ p

z
\

say) the maximum eccentricity reached, isS
z
\ 0, emax,always unity, and thus these orbits momentarily become

radial (at which time the circulation of the orbit changes
from prograde to retrograde or vice versa) ; the minimum
eccentricity, normally occurs where the line of apsidesemin,is parallel to the Stark vector and can lie anywhere between
0 and 1. In the three-dimensional case, conservation of the
angular momentum component forces and nowemax \ 1,
the inclination also varies between minimum and maximum
values. In all cases, and are constants of theemin emaxmotion ; this conveniently allows Ðne control over the range
of eccentricities encountered during testing, regardless of
the length of the integration. An example of nearly
Keplerian two-dimensional motion is given(S \ 0.12Scrit),in Figure 1.

2.2. Behavior of the W isdom-Holman Mapping
Using the WH mapping as a numerical integrator for the

Stark problem is equivalent (within round-o† error) to

FIG. 1.ÈAn example of bound, nearly Keplerian Stark motion ; the
Stark vector is directed along the direction. The initially prograde,]xü
moderate eccentricity orbit begins with its line of apsides along(e0\ 0.8)
the x-axis. The orbit subsequently undergoes a clockwise precession and
becomes increasingly radial. Upon reaching e\ 1, the orbit switches to
retrograde motion and counterclockwise precession (not shown) ; the orbit
eventually returns to prograde circulation in the lower left quadrant, and
the cycle continues.

replacing the Hamiltonian (1) with a ““ nearby ÏÏ mapping
Hamiltonian, and solving the resulting equations of motion
exactly (see Wisdom & Holman 1991). In the present case, a
second-order mapping Hamiltonian corresponding to
equation (1) is

Hmap\
Ap2

2
[GM

r
B

[ 2nd2n()t [ n)(S Æ x) , (2)

where is a periodic delta function (with period 2n),d2n(x)
)\ 2n/*t is the mapping frequency, and *t is the associ-
ated integration step size. (One physical realization of this
Hamiltonian is an orbiting satellite performing periodic,
short-duration burns of its engine.) The mapping Hamilto-
nian di†ers from the original by a series of high-frequency
() and higher harmonic) terms. In general, long-term evolu-
tion under can be expected to remain ““ close ÏÏ to theHmaptrue evolution as long as the mapping frequency exceeds all
fundamental dynamical frequencies in the problem; this is
known as the averaging principle. The second-order integra-
tion step corresponding to isHmap

I(x, p ; *t, S) \ D(x, p, *t/2)K(S, *t)D(x, p, *t/2) , (3)

where D represents a drift along an unperturbed Keplerian
orbit and K represents a momentum kick due to the pertur-
bation S (x is left unchanged by the map K). We remark
that the Kepler step D is most efficiently computed using
the Gauss f and g functions (see, e.g., Danby 1992, p. 162).

A typical example of the evolution under is shownHmapin Figure 2, which plots the fractional energy error com-
mitted for a pair of two-dimensional integrations using 100
(dashed curve) and 1000 (solid curve) points per orbit ; the
beginning orbit, similar to Figure 1, had an initial eccentric-
ity and a Stark perturbatione0\ 0.9 S \ 4 ] 10~3Scrit
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FIG. 2.ÈThe fractional energy error over time committed in the inte-
gration of an (S directed 45¡ from the initial semimajorS \ 4 ] 10~3Scritaxis), two-dimensional Stark orbit using the Wisdom-Holmane0\ 0.9,
method ; the solid curve is for the dashed for*t \ 10~3torb, *t \ 10~2torb.The initially oscillatory behavior of the solid curve fails when e increases to
where the step size no longer resolves periapse ; at late times, both orbits
random-walk in energy and eventually go unbound. Note that although
the initial separation of the curves is just what would be expected from a
second-order integrator, the separation is not even qualitatively main-
tained over the long run.

directed at a 45¡ angle from the initial line of apsides. In
contrast to the bounded, oscillatory energy errors typically
observed in symplectic integrations, in this case the errors
undergo a random walk toward unity, even using 1000
points per orbit. Eventually, in fact, these numerical orbits
become unbound and escape to inÐnityÈa qualitatively
incorrect result for the long-term motion of the particle.
This is suggestive (although not conclusive) evidence for
numerical chaos, which if present must arise from the inte-
grator itself because the analytic motion is fully integrable.
Although this result, strictly speaking, does not violate the
averaging principle (because the mapping frequency does
not exceed the pericentric passage frequency when the orbit
is nearly radial), it is nonetheless surprising that the orbits
are so unstable under such a modest perturbationÈ
particularly because the relative perturbation strength at
periapse is even smaller.

A less typical (but not infrequent) example of the evolu-
tion under is shown in Figure 3, which is analogous toHmapFigure 2, except that the Stark vector is S \ 4 ] 10~5Scritand lies parallel to the initial semimajor axis. As before, the
1000-point-per-orbit integration initially shows bounded,
oscillatory energy error that degrades signiÐcantly once
periapse is no longer resolved. In this case, however, both
integrations appear to possess bounded energy errors at
late times, albeit at a much higher level than is exhibited
initially. This long-term stability generally persists indeÐ-
nitely ; we have let particular simulations run for D1010
orbital periods with no visible change in the error bound.

A strongly suggestive illustration of the underlying dis-
tinction between the two types of behavior is show in

FIG. 3.ÈLike Fig. 2, but for (with S parallel to theS \ 4 ] 10~5Scritinitial line of apsides). Note the bounded energy error at late times.

Figure 4. The Ðgure contains three panels, each showing the
regions of stability in the *t-S plane ( Ðlled pixels) for identi-
cal initial conditions, aside from a change in initial orbital
phase ; in each case and the Stark vector is parallele0\ 0.9
to the initial line of apsides. ““ Stable ÏÏ parameters were
deÐned as ones for which the relative energy error displayed
no discernible random-walk component after several
hundred oscillations of the orbital eccentricity between emin

FIG. 4.ÈIslands of stability in the *t-S plane (black regions ; regions
smaller than a few pixels are noise). Each panel corresponds to identical
initial conditions except for the starting orbital phase. The initial mean
anomalies, from top to bottom, are The islands all centerM0\ 0, 2n/3, n.
on rational fractions of but their shapes depend strongly on*t/torb, M0.See ° 2.3.2.
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(\0.9) and (\1). The initial mean anomalies of theemaxorbits from top to bottom are 2n/3, n. TheM0\ 0,
““ islands ÏÏ of stability present in the panels display a clear
pattern : they are all centered on step sizes that are a ration-
al fraction of the orbital period (for and they areS >Scrit),most prominent at step sizes corresponding to an integral
number of points per orbit. This is clear evidence that the
stable behavior is the result of step-size resonances, and that
otherwise the mapping is generically unstable (a formal
analytic analysis supporting this assertion will be presented
in the following ° 2.3). Note also how the size of any individ-
ual island varies with the initial orbital phaseÈits area
reaches a maximum when one of the integration steps regu-
larly lands near periapse. The 2 :1 resonance(*t/torb\ 1/2)
island, for instance, is large in the andM0\ 0 M0\ n
panels (for which every other stepÈthe odd or even ones,
respectivelyÈfalls near pericenter), but small in the M0\
2n/3 panel (where all steps fall rather far from pericenter).
This points to another necessary condition for stability ;
namely, stability does not require that periapse be resolved
(which is not even possible in two dimensions, because

but merely that it be sampled. We explain theseemax\ 1),
observations in detail in ° 2.3.

Although true dynamical chaos is the most natural expla-
nation for the unstable behavior illustrated in Figure 2,
none of the evidence presented so far proves that the osten-
sibly stable trajectories in Figure 3 are in fact dynamically
stableÈi.e., regular. To test this, we computed the Lyapu-
nov times (see, e.g., Bennetin, Galgani, & Strelcyn 1976) for
a series of trajectories corresponding to a horizontal slice (at

across the bottom panel of Figure 4. TheS \ 0.04Scrit)result is shown in Figure 5 ; note that all values of tLZ
should be regarded as lower limits because of3 ] 105torbthe Ðnite length of the integration. The Ðgure provides con-

vincing evidence that the ““ stable ÏÏ islands are, in fact,

FIG. 5.ÈThe Lyapunov times across a horizontal slice (attL S/Scrit \0.04) of the panel of Fig. 4 ; values of should beM0\n tLZ 3 ] 105torbregarded as lower limits because of the Ðnite length of the integration. The
location of the stable islands is clearly visible, indicating that these are
regions of true dynamical regularity (and not bounded chaos).

dynamically stable, and not an example of bounded chaos ;
o† the islands, by contrast, the motion is strongly chaotic.
Examination of sample surfaces of section conÐrmed this
result, and also veriÐed that the integrated motion inside
the stable islands remains close (in terms of explored phase-
space volume) to the analytic trajectory for arbitrarily long
times.

The preceding results do not qualitatively change when
the general three-dimensional problem is considered. The
stable islands are still present, although they shrinkÈand
eventually disappear (except the one for which *t resolves

the Stark vector is rotated from the x-axis (theemax)Èas
initial line of apsides) to the z-axis (perpendicular to the
initial orbital plane) ; however, the same phenomenon also
occurs in the two-dimensional case when S is rotated from
the x-axis to the y-axis. In both cases the disappearance of
the islands coincides with the condition the con-eminD 0 ;
nection is explained in ° 2.3.2. Also note that although we
have concentrated on the region the mapping, notS >Scrit,surprisingly, is equally unstable for a demonstra-S DScrit ;tion of this fact from a di†erent point of view can be found
in Lessnick (1996).

Finally, a few words about numerics. Because of the
extreme range of orbital eccentricities encountered, the
Stark problem places severe stress on the Kepler stepper
(the drift operator in eq. [3]) used in the integration ; the
kick operator, by contrast, is completely trivial. In fact,
some of the stepper routines at our disposal (originally
written with low-to-moderate eccentricities in mind) failed
outright for nearly radial orbits, particularly at large step
sizes. Among those proving robust, howeverÈincluding
one using extended-precision arithmetic throughoutÈthe
choice of stepper did not alter the stability of the mapping
aside from minor changes in the precise boundaries between
the stable and unstable regions. Our testing indicates that
straightforward implementation of the universal variables
formulation of the Kepler stepper, combined with con-
strained solution of KeplerÏs equation (i.e., one guaranteed
to converge) and renormalization of the Ðnal radius and/or
velocity vector (to explicitly enforce energy conservation),
produces a nearly optimal routine in terms of both effi-
ciency and robustness.

2.3. Nonlinear Stability Analysis
Analytic examination of the nonlinear stability of the

WH method was carried out using the resonance overlap
criterion described in Wisdom & Holman (1992). In brief,
the method involves expanding the mapping Hamiltonian
as a sum of resonant terms and then retaining only the term
representing the step-size resonance under consideration.
Expansion of this Hamiltonian about the resonant value of
the canonical momentum then leads to expressions for the
width and libration frequency of that particular resonance.
Overlap, as well as subsequent instability, occurs when the
allowable libration amplitudes (e.g., in the energy
oscillations) of adjacent resonances exceeds their separa-
tion.

2.3.1. Hamiltonian Development

To begin the analysis, we rewrite the mapping Hamilton-
ian in equation (2) to explicitly show the interaction of the
step-sizeÈdependent terms with the terms of the original
Hamiltonian. Using the Fourier representation of the delta
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functions,

d2n()t)\ 1
2n

;
i/~=

=
cos i)t , (4)

the Ðrst-order mapping Hamiltonian (which di†ers from the
second-order map only in the initial phase ; cf. eq. [1]) can
be written as

Hmap \
Ap2

2
[ GM

r
B

[ 2nd2n()t)S Æ x (5)

\
Ap2

2
[ GM

r
B

[ ;
i/~=

=
(cos i)t)S Æ x . (6)

The time step, or interval between delta functions, is
*t \ 2n/). To simplify the analysis, here we consider the
two-dimensional case with the Stark vector parallel to the
x-axis. The quantity S Æ x is then S

x
x \Sr cos h \

Here r is the distance from the central mass,Sr cos (u
l
] f ).

is the longitude of pericenter, and f is the true anomaly.u
lThus, the Hamiltonian is

Hmap\
Ap2

2
[ GM

r
B

[ ;
i/~=

=
(cos i)t)Sr cos (u

l
] f ) (7)

\
Ap2

2
[ GM

r
B

[ ;
i/~=

=
(cos i)t)S(r cos f cos u

l
[r sin f sin u

l
) . (8)

Next, we expand r cos f and r sin f in terms of Bessel func-
tions, assuming a Keplerian orbit :

r
a

cos f\ cos E[e\ [3e
2

] 2 ;
k/1

= 1
k

J
k
@ (ke) cos kM , (9)

r
a

sin f\ J1 [ e2 sin E

\ J1[e2 ;
k/1

= 1
k

[J
k~1(ke)]J

k`1(ke)] sin kM , (10)

where a is the semimajor axis, E is the eccentric anomaly, e
is the eccentricity, M is the mean anomaly, k is an integer
sequence, and the and are Bessel functions andJ

k
(x) J

k
@ (x)

their derivatives (Brouwer & Clemence 1961). Thus,

Hmap \
Ap2

2
[ GM

r
B

[ aS cos u
l

;
i/~=

=
cos i)t

]
C

[ 3e
2

] 2 ;
k/1

= 1
k

J
k
@ (ke) cos kM

D

] aS sin u
l

;
i/~=

=
cos i)t

]
C
J1 [ e2 ;

k/1

= 1
k

[J
k~1(ke)] J

k`1(ke)] sin kM
D

,

(11)

where we ignore for the moment that e and M are not
appropriate canonical variables. The trigonometric factors

can be rearranged and combined :

Hmap \
Ap2

2
[ GM

r
B

] aS cos u
l

;
i/~=

=
(cos i)t)

3e
2

[ 2aS cos u
l

;
i/~=

=
;
k/1

= 1
k

J
k
@ (ke) cos (kM[ i)t)

] aS sin u
l

;
i/~=

=
;
k/1

=
J1 [ e2 1

k
[J

k~1(ke)

] J
k`1(ke)] sin (kM[ i)t) . (12)

Next, we make two related simplifying assumptions. The
Ðrst is that S is sufficiently small that the timescale for
changes in the eccentricity e and the longitude of pericenter

is much longer than the orbital period or other time-u
lscales in the system. Thus, e and will be considered asu

lconstants. By this assumption the terms in the Ðrst summa-
tion are strictly time dependent and will not contribute to
the equations of motion resulting from the Hamiltonian.
We thus ignore those terms. The second assumption is that
the eccentricity is sufficiently large that the (1[ e2)1@2 factor
is negligibly small. Dropping the Ðnal summation,

Hmap B
Ap2

2
[ GM

r
B

[ 2aS cos u
l

;
i/~=

=
;
k/1

= 1
k

J
k
@ (ke) cos (kM[ i)t) .

(13)

Rewriting the Hamiltonian in canonical variables,

HmapB [ (GM)2
2L2 [ 2aS cos u

l
;

i/~=

=
;
k/1

= 1
k

J
k
@ (ke)

] cos [k(j [ u
l
)[ i)t] , (14)

where the momentum L \ (GMa)1@2 is canonically conju-
gate to the mean longitude The arguments toj \u

l
]M.

the cosine terms are now clearly the ““ step-size resonances ÏÏ
in the Hamiltonian. Such a resonance occurs when one of
the terms of the form is slowly varying.k(j [ u

l
) [ i)t

Given our assumption that is roughly constant, thisu
lhappens when i.e., when the orbital period iskj5 [ i)B 0,

rationally related to the step size.
Next we make a canonical change of variables that

focuses on one of these terms. For this we use the mixed-
variable generating function,

F2\
A
j [ u

l
[ i

k
)t
B
&] j" , (15)

which results in the following transformation :

p \ LF2
L&

\ (j [ u
l
) [ i

k
)t ,

j@\ LF2
L"

\ j ,

L \ LF2
Lj

\ "] & . (16)
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The new Hamiltonian is

H@ \ H ] LF2
Lt

(17)

\ [ (GM)2
2("] &)2[ 2aS cos u

l
1
k

J
k
@ (ke) cos kp [ i

k
)& ,

(18)

where only the resonant term has been retained.
Because we expect the canonical momentum to be con-

strained to a narrow range of values at resonance, & should
vary little from the resonant value. Consider only the
momentum terms in the Hamiltonian :

H0@ \ [ (GM)2
2("] &)2[ i

k
)& , (19)

which can be expanded about the resonant value of & (&*) :

H0@ \ H0@ o&* ]
K LH0@

L&
K
&*

(&[ &*)

] 1
2
K L2H0@

L&2
K
&*

(&[ &*)2] É É É . (20)

The Ðrst term is a constant and can be ignored. The second
term deÐnes the resonance condition

K LH0@
L&
K
&*

\ (GM)2
("] &*)3[ i

k
)\ n* [ i

k
)\ 0 , (21)

which is identical to the earlier statement of what consti-
tutes a step-size resonance (where n* is the corresponding
mean motion). This leaves only the quadratic term,

c\
K L2H0@

L&2
K
&*

\ [3
(GM)2

("] &*)4\ [3
1

a*2 . (22)

The Hamiltonian can now be reduced to a standard form:

H@\ 12c*&2] b cos kp , (23)

where *&\ &[ &* and Web \ [2a*S[J
k
@ (ke)/k] cos u

l
.

have also assumed that the variations in semimajor axis are
small enough to justify our use of the resonant semimajor
axis, a*, in b. This is just a modiÐed pendulum Hamiltonian.
For b \ 0, the argument of the cosine, kp, oscillates about
the values 2nm (where m is an integer from 0 to k [ 1).

The half-width of the resonance is normally deÐned by
the largest value of the momentum for which the trajectory
still librates rather than circulates. This is

*&\ 2
SK b

c
K
\ 2
S

S
2J

k
@ (ke)
3k

(a*)3 o cos u
l
o . (24)

It is important to note that the resonance width depends
upon k but not upon i. Thus, in the vicinity of a particular
step size the closest k :1 resonance will be most important.
From the deÐnition of &, *L \ *&. And for small-
amplitude oscillations, *a/a D 2*L /L and *n/n D [3*L /
L . Following the pendulum approximation further, the
frequency of small oscillations (the libration frequency) is
given by

u2\ o k2bc o\ S
6kJ

k
@ (ke)

a*
o cos u

l
o . (25)

In the following section we use the components of the Ham-
iltonian development to support a geometric interpretation
of the resonance overlap criterion.

2.3.2. Geometric Interpretation

The libration about resonance derived above manifests
itself geometrically in terms of an oscillation about peri-
center of the orbital mean anomaly associated with suc-
cessive integration points. As an aid in visualization,
consider, for example, a step size equal to the mean orbital
period. If the integration is started at periapse, then each
subsequent step will also begin (and end) near periapse,
aside from a small drift induced by the Stark perturbation.
In stable libration, however, this drift away from periapse is
replaced by an oscillation centered on periapse ; in this case,
the particle is stably trapped in the 1 :1 resonance. Figure 6
shows an example of libration in the 3 :1 resonance, in
which each of the three points per orbit oscillates around a
Ðxed value of the mean anomaly M (namely, M\ [2n/3,
0, 2n/3). When this oscillation is stable, as it is in the Ðgure,
the behavior shown in Figure 3 results ; otherwise, the
behavior is that shown in Figure 2. The reason is that the
stable oscillation systematically cancels out the energy
errors that would randomly accumulate in its absence,
thereby stabilizing the long-term motion (cf. the dashed
curve in Fig. 3, where the initially linear error growth turns
into an oscillation on a timescale corresponding to the
libration period). Also note that this libration cannot
remain stable as e] 0, because pericenter becomes unde-
Ðned there ; this qualitatively explains the disappearance of
the stable islands for that was mentioned in ° 2.2.eminD 0
More formally, because the width of the k :1 resonance

(see eq. [24]), it follows immediately that*&P [J
k
@ (ke)]1@2

*&] 0 as e] 0.
Keeping this simple picture in mind, a scaling argument

describing the shape of the stable islands (Fig. 4) is easily

FIG. 6.ÈAn example of stable libration of the mean anomaly in a 3 :1
resonance. The curves display two periods, the shorter, being thetlib,primary libration period and the longer, being the timescale for thetecc,eccentricity to vary between and Libration is stable only whenemin emax.and its total amplitude is (for a k : i resonance).tlib [ tecc [2n/k
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obtained. To do this, we Ðrst deÐne the resonant time step
corresponding to the k :1 resonance, For a*tres \ torb/k.
nearby integration with time step we next deÐne*t D *tres,a ““ drift ÏÏ timescale, representing the time needed fortdrift,the mean anomaly of every kth integration point to drift by
2n/k (because of the small mismatch between *t and *tres) :In qualitative terms the libration1/tdrift\ o 1/*tres [ 1/*t o .
will become unstable when wheretdriftD tlib, tlibD

can be derived from the results of the pre-(S/Scrit)~1@2 torbvious section. This can be rewritten

o*t [ *tres oD
*t2
torb

A S
Scrit

B1@2
, (26)

where and are implied.o*t[ *tres o> *tres S >ScritBecause it follows that the width of the islands*t B torb/k,
should roughly scale like k~2 ; in addition, their boundaries
should approximate a parabola in the neighborhood of

there]. To the extent that they can*tres [S P (*t[ *tres)2be reliably measured, these scalings hold quantitatively in
Figure 4 (the bottom panel is cleanest in this regard). A
surprising corollary of this Ðnding is that decreasing the
perturbation at Ðxed step size can destabilize the calculation
by taking it outside the local stable island.

We can also use the results of the previous section to
estimate the maximum height of the k :1 resonanceSmax(k),
island. In this case we use the relations *L /L D

and *a/a D 2*L /L (assuming small-[(J
k
@ (ke)/k)(S/Scrit)]1@2amplitude oscillations) and note that the libration in a, the

semimajor axis, cannot remain stable when the k :1 reso-
nance of this orbit overlaps the (k ] 1) :1 resonance of the
nearby orbit with semimajor axis a ] *a. The latter condi-
tion occurs when [where*t

k
(a)D *t

k`1(a ] *a) *t
k
(a) \

which implies *a/a D k~1 for Equatingtorb(a)/k], S DSmax.the two then yields

Smax(k)D
C 1
4kJ

k
@ (ke)

D
Scrit . (27)

To order of magnitude we can take J
k
@ (ke)D [(1 [ e2)1@4/

(2nk)1@2] exp [[ (1[ e2)3@2k/3] (see, e.g., Abramowitz &
Stegun 1968 ; the formula becomes exact for eD 1 as
k ] O). Thus when (i.e., when *tk > kcrit\ 3(1 [ e2)~3@2
does not resolve periapse), this is close to theSmax P k~1@2 ;
actual scaling in the bottom panel of Figure 4 (for which the
empirical values of are least ambiguous). Note that theSmaxestimated reaches a minimum for andSmax k D kcritincreases exponentially for This suggests that thek Z kcrit.mapping should be stable whenever periapse is well
resolved ; all the numerical testing we have done conÐrms
this prediction. In Figure 4 this phenomenon does not occur
because and hence no Ðxed step size can resolveemax \ 1
every periapse ; in the three-dimensional case, where emax\a ““ wall ÏÏ of stability is created enclosing the entire region1,

Even though the relative perturbation*t \ torb/kcrit(emax).strength is often minuscule at periapse, it therefore appears
that the stability of the WH mapping requires that it be well
resolved regardless. The concomitant loss of efficiency for
highly eccentric orbits is obviously enormous. This moti-
vates the search for more robust methods not subject to this
limitation, the topic to which we now turn.

3. MODIFIED WISDOM-HOLMAN MAPPINGS

There are at least two important advantages of integra-
tion methods whose stability hinges only on resolution of

the highest frequencies associated with the perturbation
forces, instead of those intrinsic to the unperturbedupert,motion (which we expect the method to handle exactly),

(the inverse timescale for pericentric passage). The Ðrst,uorbof course, is efficiency : if such a method canuorb? upert,use a much larger time stepÈup to times largerÈuorb/upertthan a scheme that must explicitly resolve A moreuorb.subtle advantage concerns the unavoidable loss of energy
accuracy due to round-o† errors near periapse. More spe-
ciÐcally, if the motion is nearly Keplerian with eccentricity
e, no algorithm based on Cartesian phase-space coordinates
(that also samples pericenter) can maintain better than
N ] log o 1 [ e o digits of energy accuracy, where N is the
number of arithmetic digits carried. The proof follows
immediately from E\ p2/2 [ GM/r \ (rp2[ 2GM)/(2r)
and the fact that rp2B (1] e)GM near pericenter. Note
that doing selected intermediate calculations in extended-
precision arithmetic will not improve on this result ; the
mere act of rounding the output values of x and p to N
digits is sufficient to do the damage. In principle this
problem can be circumvented by recasting the dynamics in
terms of osculating orbital elements (for example), but the
formulation is likely to be awkward (and probably
inefficient) because the equations are not being orbit-
averaged.

The search for WH-like algorithms that are robust in the
above sense is thus well motivated. In the following sections
we will limit ourselves to examining two recently proposed
variants of the basic WH scheme, both still exact for unper-
turbed Keplerian motion. The utility of a more divergent
line of methods, based on Stark instead of Kepler motion,
will be discussed in ° 4.

3.1. T he T ime-regularized W isdom-Holman Mapping
Time regularization of the WH mapping through the use

of an extended phase space has been proposed by Mikkola
(1997). In this approach the integration substitutes a regu-
larized time s for the physical time t, the deÐning relation
between the two (as in K-S regularization ; e.g., Stiefel &
Scheifele 1971) being ds \ dt/r ; further replacement of x and
p by the corresponding K-S variables is straightforward but
entirely optional, and is not considered here. (For ease of
exposition, we will nonetheless use the term ““ regularized ÏÏ
to refer to this approach, although ““ time-regularized ÏÏ or
““ time-transformed ÏÏ would be more accurate.) The constant
steps in s used by the method naturally sample pericenter
more densely than constant-t steps would (although it is still
not quite resolved, which would require ds D dt/r3@2), o†er-
ing hope for increased reliability at high eccentricities. The
substitution of s for t is done by extending the phase space
of the original Hamiltonian to include t and E (the total
energy) as an additional pair of conjugate coordinates ; for
details, see Mikkola (1997).

The numerical performance of this method when applied
to the Stark problem is illustrated in Figure 7, which plots
the errors in energy, angular momentum, and position of
the method (using 100 points per orbit) relative to the
analytic solution for parameters identical to those in Figure
2. Accuracy and stability in this case are excellent, as they
were in every case we tried (see ° 5 for additional examples).
Examination of the corresponding surfaces of section con-
Ðrmed that the integrated motion was regular, even for inte-
grations using fewer than 10 points per orbitÈa remarkable
feat considering the eccentricities involved! It is in fact pos-
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FIG. 7.ÈA typical example of the performance of the regularized
Wisdom-Holman mapping (° 3.1) applied to the Stark problem. The rela-
tive errors in energy (solid line), angular momentum (dotted line), and posi-
tion (dashed line) are plotted for an integration utilizing 100 points per
orbit and the same initial conditions and Stark vector as Fig. 2. Unlike the
original mapping, the modiÐed method is completely stableÈthe energy
error is bounded and the lag in orbital phase grows linearly with time.

sible that the corresponding mapping Hamiltonian is inte-
grable for arbitrary time steps, although we have not
proved this.

This result demonstrates not only that methods that are
stable for time steps exist, but also*t D 1/upert ? 1/uorbthat they can be simple and efficient. In fact the regularized
WH map for this problem is noticeably faster per step than
the original mapping (cf. Table 1 in ° 5) ; this is because the
regularized Kepler stepper does not need to solve KeplerÏs
equation, and hence is much faster than the original one
(this applies only to problems of the perturbed two-body
type). Accordingly, it could even be argued that the regu-
larized method is always superior to the original for this
class of problems, even when eccentricities are lowÈ
although the speed increase will be noticeable only when
the cost of the Kepler step is a signiÐcant fraction of the
total. On its own, however, this method cannot handle close
encounters with perturbing objects ; a promising strategy

TABLE 1

RELATIVE EFFICIENCY OF SELECTED

INTEGRATION SIMULATIONS

FIGURE

INTEGRATOR 9 10 11 12

WH . . . . . . . . . 1.00 1.00 1.00 1.00
RWH . . . . . . . 0.75 0.73 0.74 1.40
PS . . . . . . . . . . 1.20 14.5 6.40 17.5
MPS . . . . . . . . 1.25 20.3 8.50 25.5
TRS . . . . . . . . 35.4 47.5 45.8 21.8
RSS . . . . . . . . . 13.7 11.9 13.8 11.1

for incorporating this capability into either the original or
the regularized method is the subject of the following
section.

3.2. Potential-splitting Methods
A well-known limitation of the WH method (and related

symplectic schemes, such as leapfrog) is that the time step
cannot easily be varied without destroying its desirable
symplectic properties, such as long-term energy conserva-
tion (see, e.g., Gladman, Duncan, & Candy 1991 ; Skeel &
Gear 1992). This makes the creation of adaptive symplectic
algorithms capable of handling close encounters a delicate
undertaking. Duncan et al. (1998 ; see also Lee et al. 1997),
building upon the approach of Skeel & Biesiadecki (1994),
have recently developed a symplectic, multiple time-step
generalization of the original WH method, which adds the
ability to resolve close encounters without seriously com-
promising its overall efficiency. We will refer to it as the
““ potential-splitting ÏÏ (PS) method because of the way it
splits the potential of each perturber into a series of radial
zones centered around it. We Ðnd the approach interesting
not only for its versatility in handling close encounters
within a symplectic framework, but also because the scheme
is amenable to regularization. To our knowledge this latter
possibility has not been explored elsewhere ; our subsequent
discussion of the PS approach will concentrate on deter-
mining the utility of such a merger.

In brief, the PS method works as follows. Consider for
simplicity a two-body orbit perturbed by a single point
mass m at a Ðxed position which generates a potentialx

p
,

the dominant central mass, M, isU(x) \ [Gm/ o x [ x
p
o ;

assumed to be at the origin. This is nothing but the TFP
problem that will be used in ° 5.1 for comparative testing.
The PS method divides the potential UÈor more conve-
niently, the perturbation force F \ [$UÈinto a series of
shells, each (except being nonzero overF \ ;

j/0= F
j
, F

j
F0)only a Ðnite range of We Ðrst introduce ano \ o x [ x

p
o .

ordered sequence of radii (i º [1), where ando
i

o~1 \O
(i [ 0) ; an arbitrary o can then beo

i
/o

i~1\ const \ 1
uniquely decomposed into an integer i and fraction y
satisfying and 0 ¹ y \ 1, where y(o)\o

i
¹ o(x) \o

i~1One then deÐnes where[o(x)[ o
i
]/(o

i~1 [ o
i
). F

j
\ h

j
(o)F,

h
j
(o) \

q

r

s

t

t

1 [ i(y) , i \ j ,
i(y) , i \ j ] 1 ,
0 , otherwise ,

(28)

and the splitting kernel i(y) is a monotonic function
satisfying i(0)\ 0 and i(1)\ 1. (The preceding are not the
most general deÐnitions, but are the ones we will use.) As
noted by Lee et al. (1997), it is also desirable for the deriv-
atives of i to vanish at the endpoints as it increases the
smoothness of the transition between neighboring theyF

j
;

suggest i(y) \ y2(3[ 2y), which is the unique cubic
satisfying i(0)\ 0, i(1)\ 1, and i@(0)\ i@(1)\ 0.

The algorithm proceeds by splitting the base time step *t
into an integral number of smaller steps whenever the test
particle enters a zone interior to the one it previously
resided inÈi.e., whenever it happens to approach to within
a certain distance of the perturber. At each such subdivi-
sion, a speciÐc kick component is applied in a way thatF

jallows further subdivisions if necessary, yet keeps the entire
process symplectic ; eventually, all higher numbered F

jvanish, the recursion is terminated, and the intervening
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Kepler drift about M is performed. The net e†ect is to take
many small steps during close encounters ; far from the per-
turber, the method reduces to the standard WH mapping
(albeit in the form kick-drift-kick instead of drift-kick-drift ;
cf. eq. [3]). For further details, consult the references.

We now propose several enhancements to the basic PS
method, which we have found can signiÐcantly improve its
stability. The Ðrst is a modiÐed kernel function, i(y). The
goal is simply to produce a fully analytic decomposition of
F, meaning one for which all derivatives of i(y) vanish at the
endpoints, instead of merely the Ðrst ; this is conceptually
similar to the creation of a ““C= bump function.ÏÏ (The use of
kernel functions with several vanishing derivatives has also
been mentioned by Duncan et al. 1998.) Many forms are
possible ; the one we have found most useful is

i(y)\ 1
2
G
1 ] tanh

C 2y [ 1
y(1[ y)

DH
. (29)

Although more costly to evaluate than the original poly-
nomial (the new code was about 30% slower), the resulting
method was stable for larger *t and longer periods of time
than the original in every test tried (including the two Ðxed
center problem, ° 5.1). On the other hand, because in many
cases the polynomial kernel performed nearly as well, we do
not claim that our modiÐed kernel is uniformly superior ; we
have, however, found it a useful alternative in situations
where the original seems to behave poorly.

The second enhancement involves force-center switching.
Whereas the basic PS method takes Kepler drifts about M
regardless of the test particleÏs proximity to the perturber m,
it is clearly advantageous to execute drifts about m during
very close encounters. This capability can be neatly incorp-
orated into the PS scheme as follows. Note Ðrst that the
potential U is not split at all when this is the regimeo [o0 ;
in which where no subdividing is done and theF0\ F,
method is equivalent to the usual WH approach. Now
deÐne a value such that wheneverjmax F

jmax
\ F o \o

jmax
;

this implies that all are identically zero for (inF
j

j [ jmaxother words, the sum of over j is now Ðnite, terminatingF
jat Thus when the full Hamiltonian is againjmax). o \o
jmax

,
available and can be separated into a piece representing an
m-drift and a piece representing the ““ perturbation ÏÏ M with
potential V \ [GM/ o x o . Next, modify the rules for sub-
division so that when (both initially and after theo \ o

jmaxtrial step, to help ensure time reversibility), kick(V /2)-
drift(m)-kick(V /2) is done instead of kick(U

jmax
/2)-drift(M)-

because here, both forms arekick(U
jmax

/2) ; U
jmax

\ U
equally valid. The resulting method now uses drifts around
m (without further subdivision of the time step) whenever
the encounter is close enough. Although any mayjmax[ 0
be used, it should obviously be chosen so that m dominates
the dynamics for It may appear that switchingo \o

jmax
.

splittings in this fashion would break the symplecticity, and
this is likely the case ; if true, however, we have not found it
to be a problem. In tests with the two Ðxed center problem,
for example, energy conservation remained stable even after
thousands of switchings. This may be due partly to the fact
that the local time step is very small when the switching
takes place, minimizing any systematic errors it may
commit. A more stringent test involved integrating an orbit
tightly bound to the ““ perturbing ÏÏ mass m for which
roughly half of each orbit was advanced using m-drifts and
the other half using M-drifts ; after 105 orbits, no secular

growth of energy error was present (a result that surprises
even us). In any event, the technique appears to be a prom-
ising one.

The Ðnal enhancement we considered was the incorpor-
ation of (time) regularization into the PS framework. This is
in fact quite straightforward to accomplish ; we simply split
the regularized forces instead of the original onesÈthe F

jbecoming regularized force components, and so on.
(Although in general these will not be derivable from aF

jpotentialÈso that, strictly speaking, the resulting method is
not symplecticÈwe have encountered no practical prob-
lems with the approach. Formal symplecticity can always
be recovered by splitting the regularized potential instead.)
The usefulness of this procedure is also clear : Whereas,
when orbits are eccentric, the basic PS method shares the
instability of the WH mapping it is based on, the regu-
larized PS method remains robust here. We have veriÐed
this directly in the case of the Stark problem; in particular,
the instability in the unmodiÐed PS method was found to
persist even when splitting of the Stark potential at small
radii was includedÈnot to mention the fact that doing this
made the method extremely inefficient ! As we will demon-
strate in ° 5, the regularized PS algorithm appears com-
pletely robust in this regard.

4. STARK-BASED INTEGRATION SCHEMES

A more radical strategy for creating integrators that are
reliable in the way outlined in ° 3 is, instead of making
minor transformations of the original Hamiltonian split-
ting, to rethink the Kepler splitting entirely. In this case the
primary motivation for altering the splitting is not to
produce a faster method, as was true for the WH mapping
(e.g., compared with leapfrog), but rather one that is more
stable. The challenge is that each piece of the new Hamilto-
nian splitting should be integrable and efficiently soluble if
the mapping is to be practical. Although integrable prob-
lems in general are a precious commodity, the preceding
analysis provides two obvious candidates : the Stark
problem and the TFP problem. (In fact the two are closely
related, because the latter reduces to the Stark problem in
the limit where m and are the masso x

p
oPm1@2] O, x

pand position of one of the Ðxed points.) In this paper,
however, we will only consider mappings based on a Stark
splitting of the Hamiltonian, arguably the simpler of the
two (because it has fewer free parameters). For comments
on the use of the TFP problem as the basis of a symplectic
mapping, refer to ° 6.

4.1. T he T ime-reversible Stark Method
The Ðrst Stark-based method considered was derived

from the original WH mapping by simply replacing the
Kepler stepper in that method with a Stark stepper, where
the value of the Stark vector for a given step was consistent-
ly taken equal to the value of the (arbitrary, not necessarily
Stark-like) perturbation force at midstep ; consequently, the
intervening ““ kick ÏÏ vanishes. (Hence computation of the
Stark vector requires some iteration, although in practice
we have often found just one iteration to be sufficient.) An
integration therefore consists solely of a sequence of Stark
steps, the Stark vector for any particular step representing a
local best Ðt to the perturbation. Note that it would be
misleading to think of this method as symplectic. The basic
problem is that in each step the Stark vector depends on the
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current position of the test particle, yet this coordinate
dependence in the mapping Hamiltonian is not accounted
for by the Stark step itself. Thus, although it is perfectly
reasonable to think of any one step as being symplecticÈ
because a strictly constant Stark vector that cancels the
corresponding kick for that step is easily manufacturedÈ
the unconstrained manner in which the vector changes
destroys the self-consistency required for the sequence of
successive steps to exhibit symplectic behavior. The situ-
ation is closely analogous to attempts to vary the step size
in, for example, leapfrog or the WH method : Although any
one step is obviously symplectic, successive steps are not
part of the same Hamiltonian Ñow and hence the integra-
tion does not display coherent symplectic properties such as
long-term energy conservation. By construction, however,
the method is explicitly time symmetric and hence might
still exhibit good energy behavior ; we will refer to it as the
time-reversible Stark method. Also note that for eccentric
orbits the perturbations near pericenter will generally be
nearly stationary, so that the Stark approximation should
be an excellent one hereÈraising hopes that the scheme
would maintain stability in such cases. Unfortunately, this
hope was quickly dashed by the results of our numerical
tests ; for details, see ° 5.

Although we came upon it independently, the above
method is very similar to one created by Newman et al.
(1997 ; see also Grazier 1997). Their motivation, by contrast,
was to explore its use in treating close encounters ; their
approach (as we understand it) represents a modiÐcation of
the method of Levison & Duncan (1994), in which the Stark
splitting is employed only during close encounters, just after
switching force centers to the nearby perturber. (Although
they refer to their version of the method as being
““ symplectic,ÏÏ it is actually not even time reversible because
of the residual ““ kick ÏÏ steps required in their approach ; we
do not consider it symplectic for the same reasons given
above.) Irrespective of motivation, it must be kept in mind
that there is a signiÐcant price to pay for using a Stark
splitting, because (in our experience) Stark steps are roughly
30 times slower than the Kepler steps they are replacing.
Unless the force calculation strongly dominates the execu-
tion time, this implies that an increase in the step size by a
factor of D30 must be permissible for the change to pay o†.
This is clearly a severe constraint ! On the other hand, if the
method is stable for and (cf.*t D 1/upert, uorb/upert Z 30
° 3), then such huge improvements would be plausible (but
as noted above, the method does not appear to be stable in
this way). When the original Kepler mapping is also stable,
however, it is quite unlikely that gains of that magnitude
would be possibleÈparticularly because the use of symplec-
tic correctors (Wisdom, Holman, & Touma 1996), of which
we have not taken advantage, can often substantially boost
the accuracy of the original mapping with no loss in overall
efficiency.

4.2. Regularized Stark Mappings
The regularization and extended phase-space techniques

employed by Mikkola (1997) can also be harnessed to
create a regularized, fully symplectic Stark-based mapping.
Consider in particular a time-dependent, perturbed two-
body Hamiltonian of the form H \ p2/2 [ 1/r ] U(x, t)
(where r \ o x o ), and introduce a Ðctitious Stark potential
[ S(t) Æ x that reproduces U(x, t) as closely as possible ; the
critical restriction is that S can depend only on t, not on x.

For example, if U(x, t) then S(t)\\ [Gm/ o x [ x
p
(t) o ,

would be optimal wheneverGmx
p
(t)/ o x

p
(t) o3 o x o > o x

p
(t) o

(and otherwise the perturbation is not Stark-like at all, so
using a Stark splitting would be pointless to begin with !).
Now rewrite H as

H(t) \ p2
2

[ 1
r
[ S(t) Æ x ] dU(x, t) , (30)

where dU(x, t) \ U(x, t) ] S(t) Æ x. Letting E\ [H be the
total binding energy, the initial bindingE0\ [H(0)
energy, and extending phase space using ds \ dt/r (cf. ° 3.1),
the extended, regularized Hamiltonian can be written as

H3 \ r
Cp2

2
[ 1

r
[ S(t) Æ x ]E0

D
] r[E[E0] dU(x, t)] .

(31)

The grouping is intended to show how is toH3 \H3 0] H3 1be split ; the (optional) addition and subtraction of the con-
stant has been included to minimize the size of the per-E0turbation (useful only if E changes little over the courseH3 1of the integration). The Ðrst piece, is clearly just theH3 0,(regularized) Hamiltonian for the time-dependent Stark
problem; however, because is independent of E, Ham-H3 0iltonÏs equations imply that the coordinate t is a constant
here (it is advanced only by the second piece of the Hamilto-
nian, Therefore, S(t) is a constant vector for the dura-H3 1).tion of the step, and we have succeeded in creating anH3 0obviously symplectic algorithm based on perturbed Stark
motion instead of perturbed Kepler motion ; hence the
method integrates the (time-independent !) Stark problem
exactly. In addition, the (optional) regularization used can
be expected to provide the same protection against insta-
bility as occurred in the regularized WH method.

5. COMPARATIVE SIMULATIONS

5.1. T he T wo Fixed Point Problem
Having described four alternatives to the original WH

schemeÈthe regularized WH mapping, the PS method
(with and without our purported enhancements), and two
types of Stark-based schemesÈwe now wish to provide
some practical insight into their relative performance. In
this section the TFP problem, whose dynamics is under-
stood in complete detail, is used as a test problem; in ° 5.2
a more generic test problem from the area of galactic
dynamics is used to estimate performance under more
““ typical ÏÏ conditions.

5.1.1. Orbital Motion

The TFP problem (see, e.g., Pars 1965) represents the
motion of a test particle in the Ðeld of two gravitating point
masses, and held at Ðxed positions, and them1 m2, x1 x2 ;
Hamiltonian per unit test mass is

H \ p2
2

[ Gm1
o x [ x1 o

[ Gm2
o x [ x2 o

. (32)

Like the Stark problem, it is fully integrable and possesses
three constants of motion ; as noted earlier, it in fact reduces
to the Stark problem in the limit (for example) o x2 oP

The problem is separable in confocal coordinatesm21@2] O.
and can be solved analytically in terms of elliptic functions
and integrals. The three constants of motion are the energy
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E, the angular momentum component along the direction
and a separation constant a (an explicit formulax2[ x1,for which can be found in Lessnick 1996, who examined the

stability of the WH map near the separatrix of this
problem; cf. ° 6).

Although the problem is rather artiÐcial (we can think of
no good physical analogies), it does allow close encounters
to be introduced in a controlled manner. In this paper we
will consider only two-dimensional motion (e.g., p

z
\ z\

with the further specializationsz1\ z2\ 0) x1\ 0, x2\
and so that the motion is nearly(x

p
, 0), Gm1\ 1 ? Gm2,Keplerian except very near There are three classes ofm2.bound motion (unbound orbits will not be considered).

First, the particle can be tightly bound to either orm1 m2,never closely approaching the other mass ; this is the limit in
which the motion is (quantitatively) similar to that in the
Stark problem. In the second type of motion, the test body
is conÐned to the annulus between two confocal ellipses
(with foci at the positions of and and hence main-m1 m2)tains a Ðnite distance from both masses at all times. In the
third type of motion, the inner bounding ellipse disappears
and the particle eventually approaches each mass arbi-
trarily closely and with encounter eccentricities arbitrarily
close to unity. Examples of the latter two motions are
shown in Figure 8.

We shall focus attention on the integration of initial con-
ditions lying near the critical line separating motion of the
second and third types ; on the critical curve, the inner
ellipse degenerates to the line connecting and and them1 m2limiting motion consists of an ever-tightening spiral that
converges on this line. Convenient, precisely critical initial
conditions are andx0\ (1, 0), p0\ (0, 1), x

p
\ [1 (m2remains arbitrary) ; slight variations of from this criticalx

pvalue then allow exquisite control over the severity of close
encounters with m2.

FIG. 8.ÈTwo examples of bounded motion in the TFP problem (° 5.1).
In the top panel, the motion is conÐned to lie between two ellipses (with
foci at the indicated positions of the Ðxed masses) and hence maintains a
Ðnite distance from both masses. In the bottom panel, the inner ellipse no
longer exists and arbitrarily close (and radial) encounters with both masses
are possible.

5.1.2. Numerical Integrator Performance

Numerical results are shown in Figures 9, 10, and 11 ; the
relative execution times for each simulation are given in
Table 1. Each Ðgure contains six panels, one for each inte-
gration method tested : The original Wisdom-Holman
method (labeled ““WH ÏÏ) ; the regularized WH mapping
(labeled ““ RWH ÏÏ ; ° 3.1) ; the original potential-splitting
method (labeled ““ PS ÏÏ) ; our modiÐed PS algorithm (labeled
““MPS ÏÏ ; ° 3.2) ; the time-reversible Stark scheme (labeled
““ TRS ÏÏ ; ° 4.1) ; and the regularized, symplectic Stark
method (labeled ““ RSS ÏÏ ; ° 4.2). The Stark stepper for the
TRS and RSS integrators implemented the analytic solu-
tion in the case of bound motion ; for unbound motion, a
highly accurate (machine-level truncation error) Bulirsch-
Stoer routine was used to integrate the K-S regularized
equations of motion numerically. Each panel plots the rela-
tive errors in the energy E (solid curve) and separation con-
stant a (dotted line) over the course of an integration lasting
103 or 104 orbital periods, where is the period of thetorbunperturbed Kepler orbit. (Because in most cases the errors
in E and a are very similar, the two curves are often difficult
to distinguish.) All integrations used *t \ 10~3torb, Gm2\
0.01, and the aforementioned near-critical initial condi-
tions ; only the value of was changed between Ðgures. Thex

pPS and MPS methods used ando0\ (m2/m1)1@3 o
i`1/oi

D
0.7 (with the time step halved each subdivision) ; when force
switching was included in was used.MPS, jmax\ 10

Figure 9 plots the results for In this case therex
p
\[1.5.

are never close encounters with and the motion ism2similar to that in the Stark problem; in particular, the orbit
periodically becomes highly eccentric. The qualitative
results in this case are quite simpleÈall regularized schemes
(RWH, MPS, RSS) behaved well and showed no signs of
instability, whereas all unregularized ones proved to be
unstable at high eccentricities. Among the latter schemes,
the TRS method performed best. Although still unstableÈ
which is rather disappointing, considering that near peri-
center the approximation of Stark motion is much superior
to that of Kepler motionÈthe use of a more Ñexible drift
operator did decrease the absolute error somewhat.

Figure 10 shows the results for In this casex
p
\[1.02.

there are frequent close encounters with both masses and
there is no limit to how close and radial they can be (cf. Fig.
8, bottom). As expected, all the single time-step integrators
(WH, RWH, TRS, RSS) quickly falter, unable to cope with
the close encounters. Although initially stable, the PS inte-
grator is occasionally overwhelmed by the extremely close
encounters present in the problem; further investigation
revealed that the discrete jumps occurred during encounters
with impact parameters (In this instance the PSb [ 10~3.
integrator was regularized, because otherwise it would have
been unstable even in the absence of close encounters.) Only
the MPS algorithm, which also included force-center
switching (as well as our modiÐed kernel function), performs
satisfactorily. As evidenced by the formation of a secular
trend late in the test, however, even this algorithm has its
limits. In particular, we have not found a practical way to
regularize about the perturber while the force-center switch
is active, and hence the scheme is unstable whenever the
encounter eccentricity exceeds some limit. The growing
error may also be partly due to nonsymplectic behavior (or
““ ringing ÏÏ) introduced by the switching process, but because
both e†ects occur only during encounters, it is difficult to
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FIG. 9.ÈComparative integrator performance for the TFP problem with and (see ° 5.1.2). In this case there are no close encountersx
p
\[1.5 Gm2\ 0.01

with the mass and the orbital motion is similar to that in the Stark problem (cf. Fig. 1). Each panel displays the relative errors in energy E (solid curve) andm2separation constant a (dotted curve) for a speciÐc integration scheme. All regularized methods (RWH, MPS, RSS) are stable and well behaved ; all others go
unstable when the orbit becomes nearly radial. Of the latter group, the TRS scheme does best because of its use of a more Ñexible drift operator.

distinguish between the two (at least in these simulations ;
but see also ° 3.2).

The results for are displayed in Figure 11.x
p
\ [0.95

Here the qualitative orbital motion corresponds to the top
panel of Figure 8 ; although both masses are approached, all
encounters have impact parameters and localb Z 0.05
eccentricities This implies that the chosen timee[ 0.95.
step is just adequate to clearly resolve the(*t \ 10~3torb)encounters with both and In this case, therefore,m1 m2.every integrator performs quite well. The PS and MPS rou-
tines do particularly well because of the e†ectively smaller
time step used near (the approaches to are closem2 m2enough that the algorithms subdivide the time step several
times each encounter). However, the relative cost in execu-
tion time (see Table 1) is commensurateÈthe WH and
RWH schemes would have produced comparable or
superior results given the same amount of CPU time.

The timing results listed in Table 1 are straightforward to
interpret. The RWH method is the most efficient because of
the speed of the regularized Kepler stepper, the force calcu-
lation being essentially trivial here. The PS and MPS
methods show little overhead cost in the absence of close
encounters, but slow down substantially when close
approaches occur frequently. The rather obvious conclu-
sion is that multiple time-step integrators (and other
““ encounter codes ÏÏ) should only be used when the detailed
encounter dynamics are important. If a moderately softened
perturbing potential is acceptable, for example, integration
using a constant time-step scheme would be both stable and
more efficient. The Stark-based schemes, while at least an
order of magnitude slower than the corresponding Kepler
mappings because of the high cost of taking Stark steps
instead of Kepler steps, were no more accurate in this case.
We conclude that such methods are uncompetitive unless
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FIG. 10.ÈSimilar to Fig. 9, but for Here the orbital motion is like that in the bottom panel of Fig. 8 and the test particle undergoes arbitrarilyx
p
\[1.02.

close (and radial) encounters with both masses. As expected, all the single time-step integrators (WH, RWH, TRS, RSS) quickly falter because they cannot
handle close encounters. Although initially stable, the PS integrator (here including regularization, to a†ord some stability) is occasionally overwhelmed by
the extremely close encounters present in the problem. Only the MPS algorithm, incorporating both regularization and force-center switching, performs
satisfactorily.

the perturbation potential is extremely Stark-like ; we con-
sider them to be of marginal interest in particular for point-
mass perturbers, which only appear Stark-like at large
distances and to lowest order.

5.2. Galactic Dynamics T est Problem
The results of a more generic test problem are shown in

Figure 12 (relative timings can again be found in Table 1).
The problem consisted of integrating test-particle motion in
the perturbing Ðeld of 100 Ðxed points of mass 10~3M
(where M is the mass of the central object, held Ðxed at the
origin). The positions of the masses were drawn randomly
from a spherically symmetric distribution with a radial
density proÐle P r~2 ; this is similar to the mass distribu-
tion seen in several galactic nuclei believed to contain
massive black holes and closely resembles the conÐgu-

rations used by Rauch & Ingalls (1998). (We do not allow
the perturbers to orbit M, because energy would not be
conserved in this case.) In addition, for the WH, RWH,
TRS, and RSS integrators (i.e., the constant time-step
methods) the perturbing potentials were slightly softened to
limit the severity of close encounters and allow a more rea-
listic comparison with the multiple time-step (PS and MPS)
routines to be made. The step size in all cases was *t \

Finally, we note that the MPS integrator used in10~3torb.these simulations did not include force-center switching,
which, because of the multitude of perturbers involved,
would have required substantial (although conceptually
straightforward) modiÐcations to the original code.

As above, each panel in the Ðgure plots the relative
energy error of a particular integrator. The solid line rep-
resents the results for an orbit with low initial eccentricity
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FIG. 11.ÈSimilar to Fig. 9, but for The orbital motion now corresponds to the top panel of Fig. 8. Both masses are approached, butx
p
\ [0.95.

encounter distance and eccentricity both have Ðnite bounds and respectively). The chosen time step, was sufficient to(b Z 0.05 e[ 0.95, *t \ 10~3torb,resolve all close encounters and hence all integrators perform well.

and the dotted line for one with high eccentricity(e0 \ 0.5),
the initial conditions were otherwise identical(e0 \ 0.99) ;

and were the same for every integrator. The results are
completely in line with previous Ðndings and show nothing
unexpected. Only the regularized methods are stable at high
eccentricities, and the PS and MPS algorithms appear
highly successful at resolving the many (unsoftened) close
encounters that occur. The one exception is the TRS
method, which in this case exhibits a secular energy drift
even for low-eccentricity orbits, whose pericenters are well
resolved ! This aberrant behavior further justiÐes the
““ nonsymplectic ÏÏ label previously placed on it (see ° 4.1).

6. DISCUSSION

We have shown that the WH mapping is generically
unstable when applied to eccentric, nearly Keplerian orbits
whenever the step size is not small enough to resolve

periapse. This ““ radial orbit instability ÏÏ appears to be fully
explainable in terms of the overlap of step-size resonances (a
detailed analysis of which, although beyond the scope of
this paper, would be desirable) and has a simple geometric
manifestation in the case of the Stark problem. Our investi-
gation indicates that the islands of stability found in the
latter problem do not exist in the more general cases we
have examined ; the instability therefore appears to be
unavoidable in typical situations, unless one employs the
brute-force approach of decreasing the time step by the
requisite amount. However, besides this solution being
extremely inefficientÈreducing the mapping to a very
costly direct integration schemeÈwe have shown that an
elegant solution to the problem is already available : the
time-regularization approach of Mikkola (1997). In every
case examined, the regularized WH mapping was not only
immune to the radial orbit instability, but in many cases
was also more efficient. We enthusiastically recommend its
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FIG. 12.ÈResults for the galactic dynamics test problem (° 5.2 ; cf. Figs. 9, 10, and 11). The solid curve shows the energy error for an orbit with low initial
eccentricity the dotted curve corresponds to (the rest of the conÐguration remaining unchanged). The performance of each integrator is(e0\ 0.5) ; e0\ 0.99
in line with expectations ; in particular, only the regularized methods remain stable when eD 1. The TRS method, however, now displays a secular trend even
for low e.

use whenever close encounters with perturbers are not of
concern.

We remind the reader that our investigation has not cast
doubt on all previous studies using the WH integrator and
its variants. In nearly every case, care has been taken to use
a small enough step size for perihelion passage to be ade-
quately sampled. We note only one area where particular
caution should be exercised. One of the features of the long-
term dynamics in mean motion resonances and secular
resonance is that very high eccentricities can be developed.
These eccentricities can be so large that physical collision
with the Sun is a common outcome in studies of meteorite
delivery from the main asteroid belt and the long-term
dynamics of ecliptic comets (Gladman et al. 1997 ; Mor-
bidelli & Moons 1995 ; Levison & Duncan 1997). In those
cases it is unlikely that the step size used was small enough
to resolve the perihelion passage. Although these

researchers checked their results for step-size dependence
and reported no numerical artifacts, we suggest that further
examination of those cases would be prudent.

We have demonstrated that the potential-splitting
method of Lee et al. (1997) can be regularized to produce an
algorithm that is robust in the face of both close encounters
and highly eccentric orbits. We have also shown that force-
center switching during exceptionally close encounters can
be cleanly incorporated into the method and can substan-
tially enhance the stability of the algorithm without notice-
ably a†ecting its desirable symplectic qualities. We have not
found, however, a practical way to regularize around the
perturber while the switch is in e†ect ; the stability of this
approach during highly eccentric encounters is correspond-
ingly questionable.

Our examination of Stark-based integrators indicates
that they, too, unless regularized, are subject to the radial
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orbit instability, although it tends to be less severe because
the Stark approximation becomes systematically better
near the origin. Unless the perturbing potential is very well
represented by a Stark potential, these integrators also
appear uncompetitive in terms of efficiencyÈby more than
an order of magnitudeÈbecause of the cost of Stark steps
relative to that of Kepler steps. Among the Stark-based
methods, the regularized, symplectic method (° 4.2) consis-
tently outperformed the time-reversible method (° 4.1), in
part because of the linear growth in the energy error some-
times exhibited by the latter. In contrast to the sentiment
expressed by Grazier (1997), our conclusion is that Stark-
based schemes are of marginal utility in the integration of
N-body systems.

It is clear that integrators based on a two Ðxed point
(TFP) splitting instead of a Stark or Kepler splitting are
also possible ; they can be constructed in the same manner
as the Stark-based methods were. Such methods could be
useful whenever two bodies strongly dominate the mass in
the system (e.g., asteroid motion in the Sun-Jupiter system).
As with Stark motion, however, the relative expense of
advancing the TFP Hamiltonian is a signiÐcant handicap
and the circumstances in which its use is justiÐed remain
unclear. On the other hand, it is likely that integrators using
a TFP splitting will typically outperform ones using a Stark
splitting. A TFP stepper should not be signiÐcantly slower
than a Stark stepper (because both problems are soluble in
terms of elliptic functions and integrals), but the former has
more degrees of freedom (because the Stark problem is
merely a special case of the TFP problem; cf. ° 5.1.1) and
provides a better model for a wider class of problems. It
would be interesting to investigate this possibility in greater
detail.

Lessnick (1996) has examined the numerical performance
of the Wisdom-Holman method near the separatrices of the
Stark and TFP problems, using the results to paint a rather
gloomy picture of the reliability of this class of algorithms.
In particular, she argues that such methods, when applied
to problems possessing a separatrix, should be expected to
go unstable (i.e., cross the separatrix) eventually, even for
extremely small step sizes. However, neither problem
studied is nearly Keplerian at the separatrix, and thus the

use of a Kepler splitting is not really appropriate to begin
with. For this reason, it is unclear to us that any useful
conclusions can be drawn from these tests about the behav-
ior of Kepler splittings in particular (as opposed to numeri-
cal integrators in general). Our results, by contrast, provide
evidence that, in general, stability can be expected as long as
the time step is chosen such that all intrinsic frequencies in
the problem are well resolved ; the poor performance found
by Lessnick results directly from the violation of this cri-
terion. Her integrations did not adequately resolve close
approaches with the Ðxed masses, and it should also be
remembered that all numerical integrators will destabilize
sufficiently close to a separatrix. We Ðnd moreover that if
time regularization is used, ““ intrinsic frequencies ÏÏ do not
appear to include those of the unperturbed problem; hence,
regularized Kepler mappings (as applied to the Stark
problem, for instance) can be stable for large step sizes and
for ““ arbitrarily long ÏÏ times, even when orbits are highly
eccentric. (We stress again, however, that encounters with
perturbers always need to be resolved.) It should also be
noted that our results are based on a small sampling of
perturbed two-body problems, and the generic validity of
this stability criterion remains to be proved. As of this
writing, however, we are aware of no counterexamples.

Although we have conÐned attention to the perturbed
two-body problem, the techniques employed in this paper
are also applicable to general hierarchical N-body systems.
In particular, we believe that regularization of the N-body
version of the potential-splitting method (Duncan et al.
1998) is likely to cure the instability at high eccentricities
noted by the authors. In principle, force-center switching of
the kind described in ° 3.2 can also be done, but we have not
studied this possibility in detail. Whether or not it turns out
to be a practical success, this fusion of methods certainly
merits further consideration. For perturbed two-body prob-
lems, at least, we have found the combination of regulariza-
tion and potential splitting to produce a powerful and
highly versatile symplectic integration method.

We thank Doug Hamilton, Norm Murray, Scott
Tremaine, and Man Hoi Lee for illuminating discussions,
and the referee for providing detailed comments.
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